pandakota.input.methods module
Methods
DAKOTA Methods
- class pandakota.input.methods.ColinyCobylaOptimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: float, initial_delta: float | None = None, variable_tolerance: float | None = None, solution_target: float | None = None)
Bases:
Optimize
Constrained Optimization BY Linear Approximations
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
to_string
- optimize_type = 'coliny_cobyla'
- to_string() str
- class pandakota.input.methods.JegaOptimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: float, population_size: int, seed: int, replacement_type: str | None = None, convergence_type: str | None = None, initialization_type: str | None = None, crossover_type: str | None = None, crossover_rate: float | None = None, mutation_type: str | None = None, mutation_rate: float | None = None, num_parents: int | None = None, num_offspring: int | None = None, flat_file_path: str | None = None)
Bases:
Optimize
Abstract Base Class for JEGA methods
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- population_size
- refinements
- seed
Methods
add_refinement
check_convergence_type
check_crossover_type
check_initialization_type
check_mutation_type
check_replacement_type
to_string
- classmethod check_convergence_type(ct: str)
- classmethod check_crossover_type(cot: str)
- classmethod check_initialization_type(it: str, flat_file_path: str)
- classmethod check_mutation_type(mt: str)
- classmethod check_replacement_type(rt: str)
- convergence_types = {}
- crossover_types = {'multi_point_binary', 'multi_point_parameterized_binary', 'multi_point_real', 'shuffle_random'}
- initialization_types = {'flat_file', 'simple_random', 'unique_random'}
- mutation_types = {'bit_random', 'offset_cauchy', 'offset_normal', 'offset_uniform', 'replace_uniform'}
- optimize_type = "jega # TODO: Change to 'soga' or 'moga'."
- property population_size
- replacement_types = {'elitist', 'roulette_wheel', 'unique_roulette_wheel'}
- property seed
- to_string() str
- type_rate_pairs = {'crossover_type': 'crossover_rate', 'mutation_type': 'mutation_rate'}
- class pandakota.input.methods.LatinHypercubeSampling(nsamples: int, seed: int)
Bases:
Sampling
LHS
- Attributes:
- nsamples
- refinements
Methods
add_refinement
to_string
- add_refinement(refinement_samples: int | None = None)
- sample_type = 'lhs'
- class pandakota.input.methods.Method
Bases:
ABC
Abstract Base Class for all methods
- Attributes:
- refinements
Methods
add_refinement
to_string
- add_refinement(refinement_samples: int)
- property refinements
- requires_gradients = False
- requires_hessians = False
- abstract to_string() str
- class pandakota.input.methods.MogaOptimize(*args, niching_type=None, postprocessor_type=None, **kwargs)
Bases:
JegaOptimize
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- population_size
- refinements
- seed
Methods
add_refinement
check_convergence_type
check_crossover_type
check_initialization_type
check_mutation_type
check_replacement_type
to_string
- convergence_types = {'metric_tracker', 'num_generations', 'percent_change'}
- optimize_type = 'moga'
- replacement_types = {'below_limit', 'elitist', 'roulette_wheel', 'unique_roulette_wheel'}
- class pandakota.input.methods.MonteCarloSampling(nsamples: int, seed: int)
Bases:
Sampling
Random sampling
- Attributes:
- nsamples
- refinements
Methods
add_refinement
to_string
- sample_type = 'random'
- class pandakota.input.methods.NcsuDirectOptimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: int, solution_target: float | None = None, min_boxsize_limit: float | None = None, volume_boxsize_limit: float | None = None)
Bases:
Optimize
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- min_boxsize_limit
- refinements
- solution_target
- volume_boxsize_limit
Methods
add_refinement
to_string
- property min_boxsize_limit
- optimize_type = 'ncsu_direct'
- property solution_target
- to_string() str
- property volume_boxsize_limit
- class pandakota.input.methods.NlpqlSqpOptimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: float)
Bases:
Optimize
NLPQL Sequential Quadratic Program
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
to_string
- optimize_type = 'nlpql_sqp'
- class pandakota.input.methods.Optimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: float)
Bases:
Method
Abstract Base Class for all optimization methods
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- optimize_type
- refinements
Methods
add_refinement
to_string
- property convergence_tolerance
- function_key = 'objective_functions'
- property max_function_evaluations
- property max_iterations
- optimize_type = None
- to_string() str
- class pandakota.input.methods.OptppCgOptimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: float, max_step: float | None = None, gradient_tolerance: float | None = None, speculative: bool = False)
Bases:
OptppOptimize
Conjugate gradient optimization
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
check_merit_function
to_string
- optimize_type = 'optpp_cg'
- requires_gradients = True
- class pandakota.input.methods.OptppFdNewtonOptimize(*args, search_method: str | None = None, centering_parameter: float | None = None, steplength_to_boundary: float | None = None, **kwargs)
Bases:
OptppNewtonOptimize
Finite Difference Newton optimization method
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
check_merit_function
check_search_method
to_string
- optimize_type = 'optpp_fd_newton'
- requires_gradients = True
- requires_hessians = False
- class pandakota.input.methods.OptppGNewtonOptimize(*args, search_method: str | None = None, centering_parameter: float | None = None, steplength_to_boundary: float | None = None, **kwargs)
Bases:
OptppNewtonOptimize
Newton optimization method based on least-squares calibration
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
check_merit_function
check_search_method
to_string
- optimize_type = 'optpp_g_newton'
- requires_gradients = False
- requires_hessians = False
- class pandakota.input.methods.OptppNewtonOptimize(*args, search_method: str | None = None, centering_parameter: float | None = None, steplength_to_boundary: float | None = None, **kwargs)
Bases:
OptppOptimize
The optpp_newton method, and base class for other Opt++ Newton methods
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
check_merit_function
check_search_method
to_string
- classmethod check_search_method(sm)
- optimize_type = 'optpp_newton'
- requires_gradients = True
- requires_hessians = True
- search_methods = {'gradient_based_line_search', 'tr_pds', 'trust_region', 'value_based_line_search'}
- to_string() str
- class pandakota.input.methods.OptppOptimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: float, max_step: float | None = None, gradient_tolerance: float | None = None, speculative: bool = False, merit_function: str | None = None)
Bases:
Optimize
Abstract Base Class for Opt++ family of local optimizers
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
check_merit_function
to_string
- classmethod check_merit_function(mf: str)
- merit_functions = {'argaez_tapia', 'el_bakry', 'van_shanno'}
- optimize_type = 'optpp # TODO: change to one of the optpp_* methods'
- to_string() str
- class pandakota.input.methods.OptppPdsOptimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: float, search_scheme_size=None)
Bases:
OptppOptimize
Simplex-based derivative-free optimization
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
check_merit_function
to_string
- optimize_type = 'optpp_pds'
- to_string() str
- class pandakota.input.methods.OptppQNewtonOptimize(*args, search_method: str | None = None, centering_parameter: float | None = None, steplength_to_boundary: float | None = None, **kwargs)
Bases:
OptppNewtonOptimize
Quasi-Newton optimization method
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- refinements
Methods
add_refinement
check_merit_function
check_search_method
to_string
- optimize_type = 'optpp_q_newton'
- requires_gradients = True
- requires_hessians = False
- class pandakota.input.methods.Sampling(nsamples: int, seed: int)
Bases:
Method
Abstract Base Class for all sampling methods
- Attributes:
- nsamples
- refinements
- sample_type
Methods
add_refinement
to_string
- function_key = 'response_functions'
- property nsamples
- sample_type = None
- to_string() str
- class pandakota.input.methods.SogaOptimize(max_iterations: int, max_function_evaluations: int, convergence_tolerance: float, population_size: int, seed: int, replacement_type: str | None = None, convergence_type: str | None = None, initialization_type: str | None = None, crossover_type: str | None = None, crossover_rate: float | None = None, mutation_type: str | None = None, mutation_rate: float | None = None, num_parents: int | None = None, num_offspring: int | None = None, flat_file_path: str | None = None)
Bases:
JegaOptimize
- Attributes:
- convergence_tolerance
- max_function_evaluations
- max_iterations
- population_size
- refinements
- seed
Methods
add_refinement
check_convergence_type
check_crossover_type
check_initialization_type
check_mutation_type
check_replacement_type
to_string
- convergence_types = {'average_fitness_tracker', 'best_fitness_tracker'}
- optimize_type = 'soga'
- replacement_types = {'elitist', 'favor_feasible', 'roulette_wheel', 'unique_roulette_wheel'}